检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学医学图像与信息系统研究中心,重庆400065
出 处:《重庆邮电大学学报(自然科学版)》2011年第1期121-126,共6页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:国家自然科学基金(60873186)~~
摘 要:奇异值特征向量是用于图像识别的有效代数特征,但直接用奇异值特征向量做匹配进行人脸识别,识别率极低。通过对人脸图像奇异值向量和其对应的左右正交特征矩阵分析,发现图像的奇异值向量与图像的灰度范围具有相关性,即最大奇异值反映了图像灰度范围的位置,其他奇异值反映了灰度范围的宽度,而且与图像奇异值向量对应的左右正交特征矩阵能够表现图像轮廓的结构信息。基此,提出基于奇异值分解(singular value distribution,SVD)的基空间人脸识别算法,并通过ORL和ORL-IC数据库进行仿真,实验结果分析证明了图像的左右正交特征矩阵能够表现图像轮廓的结构信息。According to the analysis of the singular value vector of face image and left-right orthogonal charac, teristic matrix which corresponds to the singular value vector, the singular vectors related to image grayscale was found in the paper as follows: The maximum of the singular values presented the position of image grayseale, and other singular values showed the width of Grayseale. Moreover, it was also discovered that the left-right orthogonal characteristic matrix which corresponded to image singular value vectors could present structure information of picture contour. Finally, basis space face recognition algorithm based on SVD( singular value distribution) was proposed in order to make further certification that image left-right orthogonal characteristic matrix could present structure information of picture contour, carrying on emulation in the ORL and ORL-IC database. It is concluded that the left-right orthogonal characteristic matrix can present structure information of picture contour.
关 键 词:人脸识别 奇异值分解(SVD) 特征向量 特征矩阵 基空间
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69