检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱英娣[1] 赵德智[1] 祝云燕[1] 酒巧娜[1]
机构地区:[1]辽宁石油化工大学石油化工学院,辽宁省抚顺市113001
出 处:《炼油技术与工程》2011年第1期50-52,共3页Petroleum Refinery Engineering
摘 要:针对传统的焦化产品收率预测方法准确性较差的实际情况,用Matlab编程构造了3层前馈BP神经网络,采用带动量的批处理梯度下降法来训练网络,并用所得模型对已知样本数据进行预测。结果表明,运用BP神经网络对焦化产品收率能够进行准确预测,最大相对误差为3.33%。与传统的预测模型相比,该网络模型的预测精准度更高。The accuracy is very low in the prediction of product yields of delayed coking process with conventional mathematic model.A 3 forward-feed BP neural network was constructed with Matlab, the network was trained based on train gradient descent method, and the modeling was performed on the known sample data. The result shows: the BP neural network can efficiently predict the coke make with high accuracy. The highest relative error is 3.33%. As compared with the conventional prediction model, the BP model offers a higher prediction accuracy.
关 键 词:延迟焦化 产品收率 MATLAB6.5 BP神经网络 预测
分 类 号:TE624.32[石油与天然气工程—油气加工工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.146.79