A defect-correction method for unsteady conduction convection problems Ⅰ:spatial discretization  被引量:4

A defect-correction method for unsteady conduction convection problems Ⅰ:spatial discretization

在线阅读下载全文

作  者:SI ZhiYong HE YinNian WANG Kun 

机构地区:[1]Faculty of Science, Xi'an Jiaotong University, Xi'an 710049, China

出  处:《Science China Mathematics》2011年第1期185-204,共20页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No.10971166);the National Basic Research Program of China (Grant No. 2005CB321703)

摘  要:In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct this solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property.In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct this solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property.

关 键 词:unsteady conduction-convection problems mixed finite element method defect-correction stability analysis error estimates 

分 类 号:O175.2[理学—数学] TH490.8[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象