检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李中平[1] 苏越[1] 沈红艺[1] 张晓天[2] 范琳[2]
机构地区:[1]上海中医药大学健康营养研究室,上海201203 [2]上海中医药大学曙光医院国际健康中心,上海201203
出 处:《中西医结合学报》2011年第2期148-152,共5页Journal of Chinese Integrative Medicine
基 金:"十一五"国家科技支撑计划项目(No.2006BAI13B01);上海市卫生局科研基金项目(No.2009164)
摘 要:目的:采用偏最小二乘法探讨亚健康状态的判识模型。方法:采用偏最小二乘法进行建模、预测,对亚健康状态进行判别,统计判别的准确率;在逐步回归变量筛选后再次进行预测,观察判别准确率的变化情况。结果:基于偏最小二乘法建立的亚健康判识模型对亚健康状态的预测准确率为89.47%,经变量筛选后,预测准确率提高至92.10%。结论:偏最小二乘法在亚健康状态的模型判别中具有较高的准确性,在亚健康建模的研究中有一定的参考价值。基于变量筛选后预测准确率的变化,从量表优化的角度来看,偏最小二乘法也可以为变量的精简提供一定的依据。Objective:To explore the discrimination model of subhealth with statistical method of partial least squares(PLS).Methods:This study was based on the Subhealth State Rating Scale(SHSRS).A total of 88 subhealth subjects(scoring less than 85 in SHSRS)and 64 healthy people(scoring over 85 in SHSRS)were enrolled randomly.Information regarding the clinical symptoms was screened by stepwise regression as independent variables.Mathematical models were established by leave-one-out in PLS program for subhealth recognition before and after stepwise regression respectively.Accuracy rates were observed and compared by using the Visual Basic 6.0.Results:The practical accuracy rate of PLS models in subhealth recognition was 89.47%,and increased to 92.10% after stepwise regression for variables.Conclusion:PLS has certain reference value in establishing subhealth discrimination models.It can also play an important part in item selection of the scale.
分 类 号:R195[医药卫生—卫生统计学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.95.6