基于SVM与多振动信息融合的齿轮故障诊断  被引量:29

Gear fault diagnosis based on SVM and multi-sensor information fusion

在线阅读下载全文

作  者:蒋玲莉[1,2] 刘义伦[1] 李学军[2] 陈安华[2] 

机构地区:[1]中南大学机电工程学院,湖南长沙410083 [2]湖南科技大学机械设备健康维护湖南省重点实验室,湖南湘潭411201

出  处:《中南大学学报(自然科学版)》2010年第6期2184-2188,共5页Journal of Central South University:Science and Technology

基  金:国家自然科学基金资助项目(50775070);湖南省自然科学基金重点资助项目(09JJ8005)

摘  要:针对齿轮振动信号故障特征微弱以及单个传感器故障诊断可靠性与准确性低等问题,采用多传感器信息融合方法,利用支持向量机(SVM)对8路齿轮振动信号进行特征级融合,实现故障诊断。研究结果表明:基于多个传感器单个特征量信息融合的齿轮故障诊断率比常规的基于单个传感的多个特征量的诊断准确率更高,诊断结果更可靠;峰值因子对齿轮故障最敏感,以峰值因子为特征量的多传感器信息融合,诊断准确率达93.33%。To solve the problems that the vibration signals from a gearbox are usually noisy and it is difficult to find a potential failure in a gearbox by a single sensor,using support vector machine(SVM) as a tool for feature-level information fusion,eight gear vibration signals for fault diagnosis were investigated.The results show that the method for gear fault diagnosis based on multi-sensors information fusion has higher reliability and accuracy than that based on a single sensor.The crest factor is the most sensitive character for gear failure and the diagnostic accuracy rate reaches 93.33% by using the character to perform multi-sensor information fusion.

关 键 词:多振动信号 信息融合 SVM 故障诊断 齿轮 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象