检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009
出 处:《合肥工业大学学报(自然科学版)》2011年第2期246-250,共5页Journal of Hefei University of Technology:Natural Science
基 金:安徽省教学研究课题资助项目(2008jyxm240);合肥工业大学科学研究发展基金资助项目(2009HGXJ0035)
摘 要:关联规则挖掘算法用于从大型数据库中提取感兴趣的规则,然而,在领域知识中已经能清晰表示的知识并没有被充分考虑,关联规则挖掘算法提取的规则中包含了大量已知的关联性,从而产生了很多冗余规则。文章提出一种算法DKARM,同时考虑了数据本身以及相关的领域知识,以消除在领域知识中清晰表示的已知关联性。实验表明,该算法合理消除了冗余规则,有效降低了规则数目。Many association rule mining algorithms have been developed to extract interesting patterns from large databases.However,a large amount of knowledge explicitly represented in domain knowledge(DK) has not been used to reduce the number of association rules.A significant number of well known dependences are unnecessarily extracted by association rule mining algorithms,which results in the generation of hundreds or thousands of non-interesting association rules.This paper presents a DKARM algorithm,which takes both database and relative DK into account,to eliminate all associations explicitly represented in DK.Experiments on the proposed algorithm show the significant reduction of the number of rules and the elimination of non-interesting rules.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222