检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾瑞玉[1] 查丰[1] 耿锦威[1] 宁再早[1]
机构地区:[1]安徽大学计算机科学与技术学院,安徽合肥230039
出 处:《计算机技术与发展》2011年第3期76-78,共3页Computer Technology and Development
基 金:安徽省自然科学基金项目(KJ2008B092)
摘 要:传统的分层聚类算法在聚类过程中,仅使用样本间的距离作为相似度的唯一标准,其描述过于单一。考虑到宇宙中星系的形成过程本质也是一种聚类过程,星系之间吸引力是靠万有引力作用。将万有引力思想引人分层聚类中,提出一种基于引力的层次聚类算法HCBG(Hierarchical Clustering Base Gravity),从样本问的距离和类簇的大小两个方面更加精确地刻厕相似度。把分层聚类的过程看成样本点之间依据“万有引力”自发吸引的过程。采用UCI机器学习数据库的I.ris,Wine和Glass数据集,实验结果表明,提出的HCBG算法的聚类结果比经典的基于距离的层次聚类HC(Hierarchical Clustering)提高5%~10%左右。The traditional hierarchical clustering algorithm for clustering process, only uses the distance between samples as the sole criterion for similarity, this description is too simple. Associated with the formation of galaxies in the universe is essentially a clustering process by gravitational attraction between galaxies role. Introduce the idea of hierarchical gravitational clustering, propose a hierarchical clustering algorithm based on gravitational HCBG (Hierarchical Clustering Base Gravity), from two aspects of the distance between the samples and the cluster size classes more accurately depicts the similarity. The hierarchic',d clustering process is regarded as the sample points based on "gravity" to attract spontaneous process. Use UCI machine learning database : Iris, Wine and Glass as data sets, experimental results show that the proposed algorithm HCBG clustering results than classical hierarchical clustering based on distance HC ( Hierarchical Clustering) increase 5% - 10% or so.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229