多特征融合的退火粒子滤波目标跟踪  被引量:3

Multi-featured integration annealing particle filtering target tracking

在线阅读下载全文

作  者:初红霞[1,2] 王科俊[1] 王希凤[2] 郭庆昌 韩晶[2] 

机构地区:[1]哈尔滨工程大学自动化学院,哈尔滨150001 [2]黑龙江工程学院电子工程系,哈尔滨150001

出  处:《计算机工程与应用》2011年第6期164-167,183,共5页Computer Engineering and Applications

基  金:国家高技术研究发展计划(863)No.2008AA01Z148;黑龙江省教育厅项目(No.11531307)~~

摘  要:针对传统粒子滤波的建议分布没有利用到当前观测信息的缺点,提出了一种基于多特征融合的退火算法来改进建议分布的粒子滤波跟踪方法。该方法解决了高维状态下计算量大和粒子数匮乏问题。采用退火方法在蒙特卡洛重要采样范围内产生更好的建议分布,并用退火似然性抽样来代替简单的先验概率抽样。在似然逼近中,应用颜色和边缘相融合的图像特征属性在不同的退火层加权来产生权重功能函数。用该方法对复杂背景下和存在遮挡情况下的运动目标进行跟踪,结果表明该方法有较高的跟踪精度和较强的稳定性。Proposal distribution of traditional particle filtering has the shortcomings which is lacking of utilizing current observational information.In order to improve the performance of particle filter for target tracking,a particle filter tracking method based on multi-featured integration annealing algorithm is proposed to improve the proposal distribution.The proposed solu- tion gives an answer to the large amount of calculation and lacking of particles under high-dimensional conditions.With adoption of the approach, the better proposal distribution can be generated within the scope of Monte Carlo importance sampling range, and the simple priori probability sampling can also be replaced by annealing likelihood sampling.In the likelihood approximation, image feature attribute of colors and edges integration is applied to generate weight function at different annealing layer by weighing.Experiment shows the method is of higher tracking accuracy and stronger stability when tracking moving objects is under complex situation and occlusion circumstance.

关 键 词:粒子滤波 模拟退火 多特征融合 建议分布 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象