检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北大学数学系,保定071002 [2]华北电力大学基础科学系,保定071003
出 处:《Journal of Mathematical Research and Exposition》1999年第3期501-507,共7页数学研究与评论(英文版)
摘 要:It's well known that a reflectin rα associated to every root α belongs to the Weyi group of a Lie algebra g(A) of finite type. When g(A) is a symmetrizable Kac-Moody algebra of indefinite type, one of can define a reflection rα for every imzginary root α satisfying (α, α) < 0. From [3] we know rα ∈-W or rα is an element of-W mutiplied by a diagram automorphism . How about the relationship between reflections associated to imaginary root and the Weyl group of a symmetrized Kac-Moody algebra (GKM algebra for short)? We shall discuss it for a special GKM algebra in present paper (see 3). In sections 1 and 2 we introduce some basic concepts and give the set of imaginary root of a class of rand 3 GKM algebras.对有限型李代数g(A),相应于每个根α的反射rα均在g(A)的Weyl群W中.当g(A)为可对称化的不定型Kac-Moody代数时,若α为一虚根且(α,α)<0,则亦可定义反射rα并有rα∈-W或rα是-W中元与一个图自同构之积(见[3]).本文给出了一类秩为3的广义Kac-Moody代数的虚根系,然后讨论了一类特殊的广义Kac-Moody代数的虚根决定的反射与Weyl群之间的关系.
关 键 词:generalized Kac-Moody algebra imaginary root system the Weyl group special imaginary root
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147