检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹芳[1] 吴迪[1] 郑金土 鲍一丹[1] 王遵义[3] 何勇[1]
机构地区:[1]浙江大学生物系统工程与食品科学学院,浙江杭州310029 [2]浙江省宁波市林特科技推广中心,浙江宁波315010 [3]浙江万里学院科研处,浙江宁波315100
出 处:《光谱学与光谱分析》2011年第4期920-923,共4页Spectroscopy and Spectral Analysis
基 金:农业部公益性行业专项项目(200903044);浙江省重大科技专项项目(2009C12002);浙江省自然科学基金重点项目(Z3090295);宁波市重大科技攻关项目(2007C10034);宁波市农业攻关-合作项目(2008C10037)资助
摘 要:提出了利用可见-近红外光谱技术和多光谱成像技术检测鸭梨损伤随时间及程度变化的新方法。利用可见-近红外光谱技术,分别结合偏最小二乘(partial least squares,PLS)和最小二乘支持向量机(leastsquares-support vector machine,LS-SVM)方法对鸭梨受损程度和受损天数进行预测。结果表明,两种方法在鸭梨损伤后期对损伤程度的判别均具有较好的效果;LS-SVM方法对鸭梨轻度损伤的损伤天数的预测精度较高,但重度损伤天数的预测效果不如PLS方法。然后利用多光谱图像预测鸭梨受损天数。研究发现,利用LS-SVM建立的模型预测效果较稳定,预测结果相关系数均在0.85左右。说明利用可见-近红外光谱分析技术和多光谱成像技术能够快速无损地检测出鸭梨的损伤程度及时间,为鸭梨检测提供了一种新方法。A new approach to detect the injury degree and time of pear based on visible-near infrared spectroscopy and multispectral image has been proposed.Firstly,visible-near infrared spectroscopy combined with partial least squares(PLS) and least squares-support vector machine(LS-SVM) was used for pear injury degree and time prediction.The result indicated that these two methods both have good performances in predicting pear injury degree in the late period.The LS-SVM method is more accurate in predicting the injury time of light pear injury,but its overall result of injury time prediction is not as good as that for the PLS method.Then,the multispectral image was used to predict the time of pear injury.The result shows that for different degrees of pear injury,the prediction models based on LS-SVM have a better performance with correlation coefficients around 0.85.The result of this study can be used to detect the injury degree and time of pear rapidly and non-destructively,and provide a new approach to pear classification.
关 键 词:可见-近红外光谱 多光谱成像 鸭梨 最小二乘支持向量机 偏最小二乘法
分 类 号:S123[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244