检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105
出 处:《计算机仿真》2011年第3期246-249,339,共5页Computer Simulation
摘 要:研究神经网络优化问题,为了进一步解决粒子群优化算法本身存在的早熟和局部收敛的问题,提高神经网络训练精度,提出了一种区域选择粒子群算法(Regional Selection Particle Swarm Optimization,RSPSO)。算法根据每个粒子所在区域不同,在每个粒子所在区域内,当适应值小于最佳适应值时,依据所在区域,重新进行初始化,从而使算法具有更强的全局收敛性和动态的自适应性。通过对几种典型的测试函数进行仿真结果表明改进算法具有更好的收敛精度,改善了优化性能,并且能够更有效避免早熟收敛问题,寻找到全局最优解。In order to overcome inherent weaknesses of premature and partial convergence on Particle swarm optimization algorithm,this paper presents a regional selection particle swarm optimization algorithm.Accrording to the areas where each particle exists,while the adaptive value is less than the best fitness value,it is re-initialized on the basis of region,so that the algorithm has strong capacity of global convergence and dynamic self-adaptive.Experimental results show that the new algorithm can not only greatly improve the global convergence ability and enhance the accuracy of convergence,but also avoid the premature convergence effectively,and find the global optimal solution.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145