检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学机电与信息工程学院,北京100083 [2]中北大学信息与通信工程学院,太原030051
出 处:《计算机工程》2011年第6期209-211,共3页Computer Engineering
摘 要:在经典的多尺度Retinex算法中对Retinex输出采用一个常数增益,使图像在平滑区域和高对比度边缘出现过增强,导致噪声放大和边缘晕环。针对该问题,提出改进MSR算法,对Retinex输出采用自适应空间变化增益,平滑区域和高对比度边缘增益小,细节区域增益大,并且小尺度Retinex输出不同区域增益差大,而大尺度Retinex输出不同区域增益差小,从而使图像细节更清晰,同时场景轮廓和颜色呈现更自然。将该算法用于受到严重退化的雾天图像,能取得较好的图像去雾效果。In the standard multi-scale Retinex algorithm,a constant gain is applied to a Retinex output,which leads to overenhancement in smooth and edge regions,in which noise amplification and ringing artifacts take place,respectively.An improved Multi-Scale Retinex(MSR) algorithm is proposed by applying the adaptive space varying gain,which means larger gain is applied to pixels in smooth and edge regions while smaller gain is applied to pixels in detail regions.Meanwhile,the gain difference is larger between pixels of Retinex output associated with a small Gaussian surround space constants while the gain difference is small between pixels of Retinex output associated with a large Gaussian surround space constants.When the proposed algorithm is applied to images severely degraded by fog,experiments show that the algorithm can effectively remove fog degradation from color images.
关 键 词:多尺度RETINEX 图像增强 空间变化增益 雾天降质图像
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249