基于高斯混合模型的粒子滤波时频分析算法  

Time-Frequency Estimation Algorithm Using Particle Filter With Gaussian Mixture Model

在线阅读下载全文

作  者:郑华[1] 裴承鸣[1] 秦淋[1] 

机构地区:[1]西北工业大学数据处理中心,陕西西安710072

出  处:《测控技术》2011年第3期83-86,共4页Measurement & Control Technology

基  金:航空科学基金项目(05I53062)

摘  要:根据有限高斯混合模型可以逼近任意概率分布密度函数的思想,提出了一种基于高斯混合模型的非平稳信号粒子滤波时频分析算法。本方法兼顾了算法在频率缓变时的估计精度和频率突变时的动态性能,并结合一种简化的TVAR模型,通过降低估计量维度,较大幅度地改善了计算性能,满足了对非平稳信号进行在线时频分析的要求。实测数据的时频分析试验证明了本方法的优良效果。According to that finite Gaussian mixture model could approximate any probability density function,a time-frequency estimation algorithm using particle filter with Gaussian mixture model is proposed for non-stationary signals,taking into account of both the algorithm's estimation accuracy and dynamic performance.Combined with a simplified TVAR model,the computing performance of proposed algorithm was further improved,because the frequency could be estimated directly and the estimating dimensions were quite reduced.Experimental result from the measured signal is presented to demonstrates that the proposed method has great precision,quick response and real-time character.

关 键 词:粒子滤波 时频估计 高斯混合模型 

分 类 号:TN911.6[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象