用户信息保护下的学习资源知识点自动提取  被引量:2

Topic Extracting with User Information Protection on Web

在线阅读下载全文

作  者:谢铭[1,2] 吴产乐[1] 

机构地区:[1]武汉大学计算机学院,武汉4300721 [2]广西经济管理干部学院,南宁530007

出  处:《计算机科学》2011年第3期203-205,230,共4页Computer Science

基  金:国家自然科学基金(60672051);武汉大学博士生科研自主基金(20102110101000110);广西教育厅科研项目(200911LX541);广西教育科学"十一五"规划课题(2010C186);新世纪广西高等教育教改工程项目(2010JGB125)资助

摘  要:提出一种用户信息保护下的网络学习资源知识点内容自动提取方法,即在信息保护层中加入用户信息保护状态HMM模型,一旦判断保护状态无效,自动退出知识点内容提取流程,防止用户信息受到侵犯。使用用户信息保护HMM模型,对4家学习网站227名用户的查询浏览行为、用户链接、用户配置信息的真实数据集进行了实验,结果表明,进行500次随机消息测试时,模型对用户信息保护状态的判断正确率为94%,对虚假安全消息的误判率为0.04。根据4家学习网站在120天中的用户评分数据,系统使用后的平均分数较系统使用前平均增幅达23.23%。This paper proposed a method of topic extracting with user information protection in Web learning resources.We added the HMM model of user information protect stated into user information protection layer.The model can exit topic extracting procedure automatically once judging the invalid state of user information protection to prevent violations of user information.This paper evaluated HMM model of user information protection with the real data sets of 227 user′s query browsing behavior,user link,the user configuration information in four study sites.The experimental data show that for 500 random massages test,the correct ration of the model judgment on the user information protection states is 94%,the incorrect ration of that on false security messages is 0.04.According to the user ratings data of four learning sites in the 120 days,the average rate of increase of user rating reaches to 23.23% after the system is used.

关 键 词:用户信息保护 隐马尔可夫模型 动态聚合 语义级共享 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象