The Unique Distribution of Zeros in Compressing Sequences Derived from Primitive Sequences over z/(p^e)  被引量:2

The Unique Distribution of Zeros in Compressing Sequences Derived from Primitive Sequences over z/(p^e)

在线阅读下载全文

作  者:ZHENG Qunxiong QI Wenfeng 

机构地区:[1]Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, Zhengzhou 450002, China [2]State Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

出  处:《Chinese Journal of Electronics》2010年第1期159-164,共6页电子学报(英文版)

摘  要:Let Z/(p^e) be the integer residue ring with odd prime p and integer e ≥ 3. Any sequence a over Z/(p^e) has a unique p-adic expansion a = a0 +a1 .p +... 3e -1 .Pc- 1, where ai can be regarded as a sequence over Z/(p) for 0 ≤ i ≤ e - 1. Let f(x) be a strongly primitive polynomial over Z/(pe) and let a, b be two primitive sequences generated by f(x) over Z/(pe). Assume ∮(x0,...,Xe-1) =xe-1 + η(x0,..., Xe-2), where the degree of xe-2 in η/(x0, ...xe-2) is less than p-1. It is shown that if ∮(ao(t),...,ae-l(t)) = 0 if and only if ∮(bo(t),...,be-l(t)) = 0 for all nonnegative integer t with α(t)≠ 0, where a is an m-sequence determined by if(x) and a0, then a = b. In particular, when η(x0,..., Xe-2) = 0, it is just the former result on the unique distribution of zeros in the highest level sequences.

关 键 词:Stream cipher Integer residue ring Linear recurring sequence Compressing map Primitive sequence o-Uniformity 

分 类 号:O157.4[理学—数学] O174.52[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象