双摆振动系统的同相振动性  

Double pendulum system with the phase oscillation

在线阅读下载全文

作  者:黄云美[1,2] 章山林[1] 

机构地区:[1]扬州大学数学科学学院,江苏扬州225002 [2]泰州师范高等专科学校,江苏泰兴225400

出  处:《扬州大学学报(自然科学版)》2010年第4期13-16,33,共5页Journal of Yangzhou University:Natural Science Edition

基  金:江苏省高校自然科学基金资助项目(08KJB110013)

摘  要:采用MIRONENKO的反射函数法研究了双摆振动系统x′=A(t)x与y′=B(t)y的同相振动性,其中A(t)=(aij(t))2×2,B(t)=(bij(t))2×2.假设F(t),G(t)分别为x′=A(t)x,y′=B(t)y的反射矩阵,当A(t+2ω)=A(t),B(t+2ω)=B(t)时,矩阵F(-ω),G(-ω)分别相似于x′=A(t)x,y′=B(t)y的根本矩阵.若特征方程|λE-F(-ω)|=0与|μE-G(-ω)|=0具有相同的特征根,则x′=A(t)x与y′=B(t)y的稳定性相同.文中给出了特征方程|λE-F(-ω)|=0与|μE-G(-ω)|=0具有相同特征根的充分条件.Using the method of reflective function of Mironenko,this paper studies the nature of the synchronous vibration of the double pendulum system,x′=A(t)x and y′=B(t)y,where A(t)=(aij(t))2×2 and B(t)=(bij(t))2×2 are continuous on R.Suppose that F(t) and G(t) are the reflective matrix of system x′=A(t)x and y′=B(t)y respectively.If A(t+2ω)=A(t),B(t+2ω)=B(t),then F(-ω) and G(-ω) are similar to the monodromy matrix of system x′=A(t)x and y′=B(t)y respectively.If the roots of the characteristic equations |λE-F(-ω)|=0 and |μE-G(-ω)|=0 are equal,then the stability of null solution of x′=A(t)x and y′=B(t)y are the same.The sufficient conditions for the existence of the same roots of equations |λE-F(-ω)|=0 and |μE-G(-ω)|=0 are also given.

关 键 词:反射函数 振动系统 同相振动 特征根 

分 类 号:O175.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象