检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨力[1]
出 处:《纺织高校基础科学学报》2010年第4期450-456,共7页Basic Sciences Journal of Textile Universities
基 金:Specialized Research Fund of Shaanxi Provincial Department of Education (04JK127)
摘 要:对线性微分多项式的值分布与线性奧分方程解的增长性进行了研究,并得到关于线性奧分多项式零点与极点的一个基本不等式.这一结果不仅蕴涵了Frank-Weissenborn不等式,而且揭示了线性微分多项式的值分布与线性微分方程解的增长性之间的一种联系.作为此结果的应用,Hayman-Yang不等式及几个著名的定理被推广.例子表明,文中所给定理的条件是基本的.The value distribution of linear differential polynomials and the solution growth of linear differential equations are studied, and a fundamental inequality on the zeros and poles of linear differential polynomials has been obtained. This result not only covers Frank-Weissenbom inequality, and re- veals a relation between the value distribution of linear differential polynomials and the solution growth of linear differential equations. As its applications, Hayman-Yang inequality and some known theorems are generalized. The examples are provided to show that the conditions of theorems obtained in the present paper are essential.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.156.98