检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丽婷[1]
出 处:《杭州师范大学学报(自然科学版)》2011年第2期109-113,共5页Journal of Hangzhou Normal University(Natural Science Edition)
基 金:Supported by National Natural Science Foundation of Zhejiang Province(Y6090404);Supported by the Graduate Innovation Seed Project of Hangzhou Normal University
摘 要:设R是一个环,C是R的子环,C包含环R的单位元.令C R={(c,r)|c∈C,r∈R},按方式(c1,r1)+(c2,r2)=(c1+c2,r1+r2)和(c1,r1).(c2,r2)=(c1c2,c1r2+r1c2+r1r2)定义加法和乘法,易证C R是环,且单位元为(1R,0),故称这样的环为R的子环扩张.特别的,当子环C就取环R本身时,称R×R为R的平凡子环扩张.文章给出一些相关性质和例子,并证明了:1)若S=C×R是morphic环,则C和R也都是morphic环;2)若R是半单环,则R的平凡子环扩张是强morphic环.Let R be a ring, C be a subring of R, and IR∈C.Set CxR={(c,r)|c∈C,r∈R},with the addition and multiplication defined (c1+r1)+(c2+c2,r1+r2) and (c1,r1)·(c2·r2)=(c1c2,c1r2+r1r2+r1c2+r1r2) the CxR is a ring. The identity of CxR is (1R,0). Such ring is called the subring extension of R. In particular, when the subring C is R, RxR is called trivial subring extension of R. The paper provided some relevant properties and examples to investigate the morphic properties of the subring-extension of R. It is shown that if S=CxR is a left morphic ring, so are C and R and if R is a semisimple ring, then RxR is a strongly morphic ring.
关 键 词:子环扩张 (左)morphic环 强morphic
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3