Applying Multiquadric Quasi-Interpolation to Solve KdV Equation  被引量:1

Applying Multiquadric Quasi-Interpolation to Solve KdV Equation

在线阅读下载全文

作  者:Min Lu XIAO Ren Hong WANG Chun Gang ZHU 

机构地区:[1]School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

出  处:《Journal of Mathematical Research and Exposition》2011年第2期191-201,共11页数学研究与评论(英文版)

基  金:Supported by the National Natural Science Foundation of China (Grant Nos. 11070131; 10801024; U0935004);the Fundamental Research Funds for the Central Universities, China

摘  要:Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance,Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation,which is generalized from the L D operator,and used it to solve hyperbolic conservation laws and Burgers’ equation.In this paper,a numerical scheme is presented based on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation.The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative,and the forward divided difference to approximate the temporal derivative,where the spatial derivative is approximated by the derivative of the generalized L D quasi-interpolation operator.The algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance,Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation,which is generalized from the L D operator,and used it to solve hyperbolic conservation laws and Burgers’ equation.In this paper,a numerical scheme is presented based on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation.The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative,and the forward divided difference to approximate the temporal derivative,where the spatial derivative is approximated by the derivative of the generalized L D quasi-interpolation operator.The algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.

关 键 词:KdV equation multiquadric(MQ) quasi-interpolation numerical solution 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象