ON THE GLOBAL STABILITY CONJECTURE OF THE GENOTYPE SELECTION MODEL  

ON THE GLOBAL STABILITY CONJECTURE OF THE GENOTYPE SELECTION MODEL

在线阅读下载全文

作  者:S.H. Saker 

机构地区:[1]Department of Mathematics, King Saud University [2]Department of Mathematics, Faculty of Science, Mansoura University

出  处:《Acta Mathematica Scientia》2011年第2期512-528,共17页数学物理学报(B辑英文版)

基  金:the Deanship of Scientific in King Saud University and Centre of Research in Faculty of Science for their encouragements and their support

摘  要:In 1994, Grove, Kocic, Ladas, and Levin conjectured that the local stability and global stability conditions of the fixed point -y= 1/2 in the genotype selection model should be equivalent. In this article, we give an affirmative answer to this conjecture and prove that local stability implies global stability. Some illustrative examples are included to demonstrate the validity and applicability of the results.In 1994, Grove, Kocic, Ladas, and Levin conjectured that the local stability and global stability conditions of the fixed point -y= 1/2 in the genotype selection model should be equivalent. In this article, we give an affirmative answer to this conjecture and prove that local stability implies global stability. Some illustrative examples are included to demonstrate the validity and applicability of the results.

关 键 词:Local stability global stability discrete genotype selection model 

分 类 号:O242.1[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象