检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴德煌[1] 刘伟[1] 赖凯[1] 范亚[1] 李传富[2] 冯焕清[1]
机构地区:[1]中国科学技术大学电子科学与技术系,合肥230027 [2]安徽中医学院第一附属医院影像中心,合肥230031
出 处:《数据采集与处理》2011年第2期194-199,共6页Journal of Data Acquisition and Processing
基 金:国家自然科学基金(60771007)资助项目
摘 要:在Random Walk算法中,边的权重对算法分割性能有着重要的影响,针对原算法在计算权重时仅使用相邻像素灰度值变化信息的局限性,通过引入图像局部熵,使得权重函数同时反映相邻像素灰度变化信息和图像局部灰度离散度信息,增强算法对目标内容和边界的识别能力。同时通过Fisher评价函数构造最佳分类阈值的选取法则,增强了算法的判别能力。实验表明改进后的算法对目标内容和边界的识别能力有较大提高,且对噪声具有更好的鲁棒性。The edge weight is the most important factor in Random Walk algorithm.To improve the mapping ability of the weighting function can achieve better performance.The image local entropy is introduced into Random Walk algorithm to construct a new weighting function reflecting the changing information of adjacent-pixel′s gray value and the discrete information of local image.It improves the identification ability on homogeneous pixels and edge.The Fisher discriminate function is used to calculate the optimal classification threshold.Experimental results show that the improved algorithm performs better for identifying homogeneous content and boundary of target,and it has a better robustness to noise than the original algorithm.
关 键 词:图像分割 RANDOM Walk算法 局部熵 最佳阈值选取
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15