检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:华梁[1] HUA Liang ((1)ept. of Automatic Control, Suzhou Campus, Nanjing Institute of Railway Technology, Suzhou 215137, China)
机构地区:[1]南京铁道职业技术学院苏州校区自动控制系,江苏苏州215137
出 处:《电脑知识与技术》2011年第3期1604-1606,1609,共4页Computer Knowledge and Technology
摘 要:针对细菌群体趋药性(Bacterial Colony Chemotaxis,BCC)算法由于过度依赖群体交互而容易陷入局部最优解的缺陷,结合多Agent系统(Multi—Agent System,MAS)的主要特征构造一种全新算法——基于多Agent的细菌群体趋药性(MABCC)算法、该算法通过每个细菌Agent相互之间的竞争与协作,弱化其对群体信息的依赖,使其能够更精确地收敛到全局最优解.Bacterial Colony Chemotaxis (BCC)algorithm is easy to fall into a local optimal solution because of the over-reliance on group interaction. To solve the problem, this paper structured a new algorithm--Bacterial Colony Chemotaxis algorithm based on multi-agent (MABCC) combined with the main features of multi-agent system (MAS). Through the competition and collaboration among the bacteria Agent, this algorithm weakens its dependence on the group information. As a result, the bacteria converge more accurately to the global ()ptimal solution. The simulation of some test function optimization using MABCC algorithm shows this algorithm is better than BCC algorithm for the global optimization.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166