检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]衡水学院数学与计算机科学系,河北衡水053000
出 处:《数学的实践与认识》2011年第7期131-142,共12页Mathematics in Practice and Theory
基 金:衡水学院科研课题(2009032)
摘 要:基于不同的考虑,给出了体能测试安排的3个模型.模型Ⅰ,对体能测试的5个项目依据随机服务系统理论,得到每名学生测试完成的平均等待时间;模型Ⅱ,根据SAS系统Proc Univariate过程,得出体能测试班级人数的茎叶图及所有班级的一个分组,给出了各班参加体能测试的具体时问安排表;模型Ⅲ,给出了一个台阶测试与班级人数的关系式,并基于此关系式得出较精确的体能测试时间安排表.基于三个体能测试模型,给出了一种较符合实际的体能测试方案.This papers gives three mathematical models of physical fitness test based on he difference of considerations: Model Ⅰ, according to the random service system theory, the average waiting time of each student to complete the 5 testing projects is gived; Model Ⅱ, according to the Proc Univariate process in SAS system, we get the stern-and-leaf display of the number of classes in the test, divide the classes into step test and class size is gibed in accordance with the necessary conditions of physicM fitness test, then a more precise schedule of physical fitness test is gived based on this relationship. Based on the three models above, a practical method on arrangements of physical fitness test is gived.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229