基于哈密顿理论的薄壁结构双向弯曲分析  被引量:2

Analysis for compound bending of thin-walled structure using hamiltonian theory

在线阅读下载全文

作  者:胡启平[1] 涂佳黄[1] 梁经群 

机构地区:[1]河北工程大学土木工程学院,河北邯郸056038 [2]河北天鸿道桥科技有限公司,河北石家庄050043

出  处:《四川建筑科学研究》2011年第2期39-41,共3页Sichuan Building Science

基  金:河北省自然科学基金资助项目(E2006000630)

摘  要:从能量变分原理出发,由勒让德变换引入对偶变量,导出了薄壁结构双向弯曲问题的哈密顿对偶求解体系,将薄壁结构的控制微分方程转化为哈密顿对偶方程,其系统矩阵具有辛矩阵的特性,可用精细积分法求该体系的高精度数值解。算例计算结果表明,本方法具有较高的精度和适用性,并可方便地用于变截面薄壁结构的计算。Based on the energy variation principle,dual variables are introduced by the Legendre's transformation.Hamiltonian dual systems are presented for the bending problems of thin-walled structure.Control differential equations of the thin-walled structure were transformed into Hamiltonian dual equations.Numerical calculation has good stability because the system matrix has characteristics of the symplectic matrix,then numerical solutions with high accuracy are often obtained with the precise integration method.The results of the example show that the method has higher precision and applicability.Moreover,it can be applied conveniently to calculating problem of non-uniform thin-walled structure.

关 键 词:薄壁结构 双向弯曲 哈密顿对偶方程 精细积分法 对偶求解体系 

分 类 号:TU33[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象