检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学土木工程学院,辽宁大连116024
出 处:《建筑科学与工程学报》2011年第1期70-75,共6页Journal of Architecture and Civil Engineering
基 金:国家重点基础研究发展计划("九七三"计划)项目(2007CB714202)
摘 要:在分析检测数据的基础上,提取了结构服役时间、结构建造时间、结构检测时间、混凝土设计强度和混凝土碳化深度等特征参数,建立了预测既有建筑混凝土强度退化的人工神经网络模型。采用动量法和自适应调整法改进了BP算法;采用训练好的BP神经网络对既有混凝土强度最小值和混凝土强度最大值进行了预测,并与实测值进行了对比。结果表明:利用BP神经网络对既有建筑混凝土强度退化进行预测是可行的,该研究成果可为既有建筑大面积的抗震性能普查提供参考。Based on the test data analysis method,characteristic parameters of the existing buildings,i.e.service time,construction time,in-situ inspection time of structure,design value of concrete strength,and carbonation depth of concrete were extracted,and the artificial neural network model was developed to predict the degradation of concrete strength of the existing buildings.The back propagation(BP) algorithm was improved by using the momentum method and adaptive adjustment method.Both minimum and maximum values of concrete strength were predicted using the trained BP neural network and were compared with the measured values.Results show that using BP neural network to predict the degradation of concrete strength of existing buildings is feasible.Results of this study can provide references for the existing building seismic performances of large area surveys.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38