测井识别碳酸盐岩储集类型  被引量:41

Identification of Carbonate Reservoir with Log Data.

在线阅读下载全文

作  者:罗利[1] 任兴国[1] 

机构地区:[1]四川石油局测井公司

出  处:《测井技术》1999年第5期355-360,共6页Well Logging Technology

摘  要:根据孔洞和裂缝的发育情况及其在储集和渗滤中所起的作用,结合地质分类方法,将碳酸盐岩储层划分为孔洞型、裂缝—孔洞型、孔洞—裂缝型和裂缝型4种储集类型。总结了用成像测井资料鉴别碳酸盐岩溶洞和裂缝的方法,根据FMI分析结果从16口井中划分出含4种储集类型的储层,描述了4种储集类型储层的常规测井响应特征。从常规测井资料中提取出指示孔洞、裂缝发育程度及指示储层均质性和纵向变化情况的测井响应平均值、均方差、关联度及残差等参数,组成识别储集类型的样本。设计3层BP网络,对样本进行训练,得到模型参数后对储集类型进行识别。Carbonate reservoir is classified as four types, i.e., vug type, fracture vug type, vug fracture type and fracture type according to the growth degree of vugs and fractures and their effects on reservoir and infiltration as well as geologic classification method. Summed up here are the methods for indentifying vugs and fractures in carbonate with imaging logging data. Four types of reservoir are sorted out with FMI data from 16 wells and their conventional log response characteristics are also described. Seven characteristic parameters such as mean value, mean square deviation, correction index, residual error of conventional log response are extracted. They indicate the growth degree of vugs and fractures as well as reservoir homogeneity and longitidinal changes, thus, forming the samples for recognizing reservoir types. A three layer BP neural network is designed and used to train the samples. Then, the reservoir types are categorized when the model parameters are obtained. The obtained result agrees well with that of imaging logging and core analysis.

关 键 词:碳酸盐岩 类型 测井资料 神经网络 识别 储集层 

分 类 号:P618.130.7[天文地球—矿床学] P631.84[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象