基于动态测量过程的零件质量在线评价策略  被引量:1

Online Assessment Strategy of Component Quality Based on Dynamic Measurement Process

在线阅读下载全文

作  者:张健[1] 武建伟[1] 马志勇[1] 

机构地区:[1]浙江大学机械设计研究所,杭州310027

出  处:《农业机械学报》2011年第4期211-215,共5页Transactions of the Chinese Society for Agricultural Machinery

基  金:国家高技术研究发展计划(863计划)资助项目(2008AA04Z114)

摘  要:针对测量系统中测量误差的动态性以及由测量误差导致的制造质量评价过程中的误收和误废两类错误决策,提出了动态测量过程分析与贝叶斯最小成本决策准则相结合的零件质量在线评价策略。建立了系统测量误差的动态Kalm an滤波模型,并利用自适应估计开窗逼近法对随机测量方差进行在线估计;在决策过程,应用贝叶斯最小决策成本准则对零件质量进行评价,并给出了决策的置信度。最后,以电动机转子动平衡工艺为例对该方法进行了验证,结果表明,该方法能够跟踪测量误差的变化,并降低误收和误废的风险。During the process of quality assessment,aiming at the dynamics of measurement error and the two kinds of decision mistakes,namely accepting a defect and rejecting a qualified component,an online assessment strategy of component quality was proposed.Dynamic measurement process analysis and Bayesian minimal cost decision rule were combined to evaluate the quality of components.A Kalman filtering model for dynamic estimation of systematic measurement error was established and the adaptive windowing approximation method was adopted to online adjust the variance of dynamic random measurement error.In the decision process,Bayesian minimal decision cost method was used to evaluate component quality and the decision confidence was provided as well.Finally,by taking the rotor dynamic balancing process as an example,the proposed method was validated.The results indicated that this method could trace the change of measurement error,decrease the risk of the two wrong decisions,and improve the reliability of quality decisions.

关 键 词:零件 质量评价 动态测量 KALMAN滤波 贝叶斯决策 

分 类 号:TP202[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象