检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《农业机械学报》2011年第4期211-215,共5页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家高技术研究发展计划(863计划)资助项目(2008AA04Z114)
摘 要:针对测量系统中测量误差的动态性以及由测量误差导致的制造质量评价过程中的误收和误废两类错误决策,提出了动态测量过程分析与贝叶斯最小成本决策准则相结合的零件质量在线评价策略。建立了系统测量误差的动态Kalm an滤波模型,并利用自适应估计开窗逼近法对随机测量方差进行在线估计;在决策过程,应用贝叶斯最小决策成本准则对零件质量进行评价,并给出了决策的置信度。最后,以电动机转子动平衡工艺为例对该方法进行了验证,结果表明,该方法能够跟踪测量误差的变化,并降低误收和误废的风险。During the process of quality assessment,aiming at the dynamics of measurement error and the two kinds of decision mistakes,namely accepting a defect and rejecting a qualified component,an online assessment strategy of component quality was proposed.Dynamic measurement process analysis and Bayesian minimal cost decision rule were combined to evaluate the quality of components.A Kalman filtering model for dynamic estimation of systematic measurement error was established and the adaptive windowing approximation method was adopted to online adjust the variance of dynamic random measurement error.In the decision process,Bayesian minimal decision cost method was used to evaluate component quality and the decision confidence was provided as well.Finally,by taking the rotor dynamic balancing process as an example,the proposed method was validated.The results indicated that this method could trace the change of measurement error,decrease the risk of the two wrong decisions,and improve the reliability of quality decisions.
关 键 词:零件 质量评价 动态测量 KALMAN滤波 贝叶斯决策
分 类 号:TP202[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28