Conformal minimal two-spheres in Q_n  被引量:3

Conformal minimal two-spheres in Q_n

在线阅读下载全文

作  者:JIAO XiaoXiang WANG Jun 

机构地区:[1]School of Mathematics,Graduate University,Chinese Academy of Sciences,Beijing 100049,China

出  处:《Science China Mathematics》2011年第4期817-830,共14页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No.11071248);Knowledge Innovation Funds of CAS (Grant No.KJCX3-SYW-S03);the President Fund of GUCAS

摘  要:In this paper we study,using moving frames,conformal minimal two-spheres S2 immersed into a complex hyperquadric Qn equipped with the induced Fubini-Study metric from a complex projective n+1-space CPn+1.Two associated functions τX and τY are introduced to classify the problem into several cases.It is proved that τX or τY must be identically zero if f:S2 → Qn is a conformal minimal immersion.Both the Gaussian curvature K and the Khler angle θ are constant if the conformal immersion is totally geodesic.It is also shown that the conformal minimal immersion is totally geodesic holomorphic or antiholomorphic if K = 4.Excluding the case K = 4,conformal minimal immersion f:S2 → Q2 with Gaussian curvature K2 must be totally geodesic with(K,θ) ∈ {(2,0),(2,π/2),(2,π)}.In this paper we study,using moving frames,conformal minimal two-spheres S2 immersed into a complex hyperquadric Qn equipped with the induced Fubini-Study metric from a complex projective n+1-space CPn+1.Two associated functions τX and τY are introduced to classify the problem into several cases.It is proved that τX or τY must be identically zero if f:S2 → Qn is a conformal minimal immersion.Both the Gaussian curvature K and the Khler angle θ are constant if the conformal immersion is totally geodesic.It is also shown that the conformal minimal immersion is totally geodesic holomorphic or antiholomorphic if K = 4.Excluding the case K = 4,conformal minimal immersion f:S2 → Q2 with Gaussian curvature K2 must be totally geodesic with(K,θ) ∈ {(2,0),(2,π/2),(2,π)}.

关 键 词:complex hyperquadric Gaussian curvature Khler angle minimal immersion totally geodesic 

分 类 号:O186.11[理学—数学] TP273[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象