检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学理学院数学系,陕西西安710055
出 处:《教育教学论坛》2011年第17期86-87,共2页Education And Teaching Forum
基 金:科技部项目(数学类)课题立项项目(2009IM010400-1-01)基金资助
摘 要:函数列的一致收敛性概念在微分方程求解、控制理论、近似计算与误差估计等方面有重要应用。本文给出二元函数列的定义。引进了二元函数列一致收敛、局部一致收敛与次一致收敛的概念。研究了它们之间的蕴含关系。讨论了二元函数列的性质,给出了相应的例子。给出了二元函数列一致收敛的判别法和极限函数连续、可导及可积的充分条件。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15