检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:辛轶[1] 郭躬德[1] 陈黎飞[1] 毕亚新[2]
机构地区:[1]网络安全与密码技术重点实验室(福建师范大学),福州350007 [2]阿尔斯特大学计算与数学系
出 处:《计算机研究与发展》2011年第4期592-601,共10页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61070062);教育部回国留学人员基金项目(教外司留[2008]890号)
摘 要:随着数据流挖掘的应用日趋广泛,带概念漂移的数据流分类问题已成为一项重要且充满挑战的工作.根据带概念漂移的数据流的特点,一个有效的学习器必须能跟踪并快速适应这种变化.一种基于增量KnnModel的动态层次编码算法被提出用于解决数据流的概念漂移问题.在将数据流划分为数据块后,根据增量KnnModel算法对每块的预学习结果构建并更新类别层次树、层次编码,用可增量学习的分类算法对照编码划分进行学习,并生成备选分类器集.最后依据活跃度对结点进行剪枝处理以减少计算代价.在预测阶段,利用增量KnnModel算法和动态层次纠错输出编码算法的各自优势进行联合预测.实验结果表明:基于增量KnnModel算法的动态层次纠错输出编码算法不但能够提高模型学习的动态性和分类的正确性,而且还能够快速适应概念漂移的情况.With the extensive applications of data stream mining,the classification of concept-drifting data streams has become more and more important and challenging.Due to the characteristics of data streams with concept-drifting,an effective learner should be able to track such changes and to quickly adapt to them.A method named dynamic hierarchical ECOC algorithm based on incremental KnnModel(IKnnM-DHecoc) for handling the problem of concept drift is proposed.It divides a given data stream into several data blocks,and then learns from each data block by using incremental KnnModel algorithm.Based on the outcomes of pre-learning,a hierarchical tree together with a hierarchical coding matrix are built and updated,from which a chosen incremental learning method is used for training in order to build a set of classifier and a set of classifier candidates.Moreover,a pruning strategy for generated nodes of hierarchical tree is proposed to reduce computational cost by taking account of each node's activity.In testing phase,a combination scheme of taking advantage of both IKnnModel and DHecoc is used for prediction.Experimental results show that the proposed IKnnM-DHecoc algorithm not only improves the dynamic nature of learning and classification performance,but could quickly adapt to the situation of concept drift.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28