检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙旭东[1] 郝勇[1] 高荣杰[1] 欧阳爱国[1] 刘燕德[1]
机构地区:[1]华东交通大学机电工程学院,光机电技术及应用研究所,江西南昌330013
出 处:《光谱学与光谱分析》2011年第5期1230-1235,共6页Spectroscopy and Spectral Analysis
基 金:国家科技支撑计划项目(2008BAD96B04);江西省自然科学基金项目(2008GQN0029,2007GZN0266);江西省对外科技合作计划项目(2009BHB15200);江西省主要学科学术和技术带头人培养对象计划项目(2009DD00700)资助
摘 要:目的是优化脐橙糖度近红外光谱在线检测数学模型,提高检测精度。在700.28-933.79 nm光谱范围内,根据建模集样品在不同波长处的变异系数,选择基准波长点,计算样品的反射比光谱。吸光度和反射比光谱,经不同光谱预处理后,分别采用偏最小二乘法(PLS)和最小二乘支持向量回归法(LSSVR),建立脐橙糖度近红外光谱在线检测数学模型。采用30个未参与建模的脐橙样品评价模型的性能,经比较,采用一阶微分处理后的反射比光谱建立的LSSVR模型预测效果最优,模型预测相关系数为0.85,预测均方根误差为0.41°Brix。实验结果表明基准波长点、一阶微分和LSSVR相结合的优化方法在提高脐橙糖度近红外光谱在线检测精度方面具有可行性。The objective of the present research was to optimize the model of sugar content in navel orange for improving the detection presicion by the online near infrared spectroscopy.The reference wavelength was chosen by coefficient of variation of the different wavelengths in the calibration set in the wavelength range of 700.28~933.79 nm.Then the spectra were transformed into ratio specra.The absorbance and ration spectra were pretreated by different preprocessing methods.The models of sugar content were developed by partial least squares(PLS) and least squares support vector regression(LSSVR).The 30 unknown navel orange samples were applied to evaluate the performance of the models.By comparison of the predictive performances,the LSSVR model was the best among the models with the first derivative preprocessing and ration spectra.The correlation coeffiecient(RP) of the best model was 0.85,the root mean square error of prediction(RMSEP) was 0.41 °Brix.The results suggested that it was feasible to improve the precision of online near infrared spectroscopy detecting sugar content in navel orange by the optimization of reference wavelengths,the first derivative preprocessing and LSSVR.
分 类 号:S123[农业科学—农业基础科学] O434[机械工程—光学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.184