检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓路[1]
机构地区:[1]西安科技大学通信与信息工程学院,西安710054
出 处:《煤炭技术》2011年第5期81-83,共3页Coal Technology
基 金:电子信息产业发展基金招标项目(XDJ2-0514-27);国家高技术研究发展计划(863计划)(2005AA133070);陕西省教育厅项目(09JC05)
摘 要:为了提高瓦斯涌出量预测的精度和预测模型的泛化能力,提出了一种基于蚁群算法(ACO)优化支持向量机(SVM)参数的瓦斯涌出量预测方法。在SVM所建立预测模型中各个参数的取值区间内,采用蚁群优化算法计算预测模型各个参数的最佳值,基于最佳参数的SVM建立瓦斯涌出量预测模型。结果表明:采用未优化的SVM建立的预测方法,其个别预测误差相对较大,最大误差为8.11%,平均误差为4.68%,采用ACO对于预测模型的参数进行优化后,预测性能有显著提高,最大误差为4.37%,平均误差为2.89%,表明所建议的方法是有效、可行的。To accurately predict the gas emission quantity and improve forecasting performance,an approach based on the parameters of Support Vector Machine(SVM) being optimized by Ant Colony Optimization(ACO) arithmetic is proposed.ACO is introduced to calculate the best parameters in their respective value interval of SVM forecasting model.The forecasting model of gas emission quantity is established based on the SVM with the best parameters.The results show that some prediction deviations are relatively large with the averaged biases of 4.68% and the maximum error of 8.11% by using the SVM without optimization.The predictable precision is obviously improved to obtain the averaged biases of 2.89% and the maximum error of 4.37% by using the SVM based forecaster based on the best parameters calculated by ACO.It is indicated that the suggested approach is feasible and effective.
分 类 号:TD713[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28