检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白鹏[1] 宋孝玉[1] 王娟[1] 史文娟[1] 王全九[1,2]
机构地区:[1]西安理工大学西北水资源与环境生态教育部重点实验室,陕西西安710048 [2]黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌712100
出 处:《干旱地区农业研究》2011年第2期209-212,共4页Agricultural Research in the Arid Areas
基 金:国家科技支撑计划项目(2007BAD88B05);陕西省自然科学基金项目(2007E235);陕西省教育厅自然科学计划项目(08JK406)
摘 要:引入遗传算法优化BP神经网络权重和阈值的方法建立黄土坡面产流入渗模型。模型以雨强、降雨历时、表层40 cm土壤前期含水量、坡度值为输入项,径流量、入渗量为输出项,用实测资料对网络进行模拟和预测。模拟结果平均误差6.32%和1.93%,预测结果平均误差为5.71%和1.92%。并与传统BP神经网络模型和定雨强Philip回归模型的预测入渗结果进行了对比,结果表明:遗传算法优化BP神经网络模型的预测效果要明显优于传统BP神经网络模型和定雨强Philip入渗模型,三种模型入渗预测结果平均误差分别为1.92%,5.29%,9.10%,最大误差分别为6.48%,25.88%,20.36%。The method of back-propagation neural networks optimized by genetic algorithms was used to establish a hillslope runoff and infiltration model.The rainfall intensity,rainfall duration,initial soil water content and slope gradient were selected as the model inputs,and the runoff volume and infiltration volume were the model outputs.Through simulating and predicting,the results showed that simulation mean reletive errors were respectively 6.32% and 1.93%,and the prediction mean reletive errors were 5.71% and 1.92%.In order to compare the prediction effects of the model with those of other models, the unoptimized back-propagation neural network model and the Philip regression model under the condition of fixed rainfall intensity were applied to predict the infiltration amount,and the comprasion results showed that the mean reletive errors of the three models in infiltration amount prediction were 1.92%,5.29% and 9.10%,respectively,while the maximum mean reletive errors were 6.48%,25.88%,20.36%,which showed that the prediction effects of optimized back-propagation networks had better performance than the other two models obviously.
分 类 号:S271[农业科学—农业水土工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.1