检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]LMAM & School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China [2]University of Primorska, FAMNIT, Glagoljaska 8, 6000 Koper, Slovenia [3]University of Primorska, PINT, Muzejski trg 2, 6000 Koper, Slovenia
出 处:《Acta Mathematica Sinica,English Series》2011年第5期891-896,共6页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant No. 10871032), China Postdoctoral Science Foundation (Grant No. 20100470136); the second author is supported in part by "Agencija za raziskovalno dejavnost Republike Slovenije", proj. mladi raziskovalci, "Agencija za raziskovalno dejavnost Republike Slovenije", Research Program P1-0285
摘 要:Thompson's theorem indicates that a finite group with a nilpotent maximal subgroup of odd order is solvable. As an important application of Thompson's theorem, a finite group is solvable if it has an abelian maximal subgroup. In this paper, we give some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable.Thompson's theorem indicates that a finite group with a nilpotent maximal subgroup of odd order is solvable. As an important application of Thompson's theorem, a finite group is solvable if it has an abelian maximal subgroup. In this paper, we give some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.89