Strict Topology over the Space of Measures with Continuous Translations on a Locally Compact Foundation Semigroup  

Strict Topology over the Space of Measures with Continuous Translations on a Locally Compact Foundation Semigroup

在线阅读下载全文

作  者:S. MAGHSOUDI R. NASR-ISFAHANI 

机构地区:[1]Department of Mathematics, Faculty of Sciences, Zanjan University, Zanjan 313, Iran [2]Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran

出  处:《Acta Mathematica Sinica,English Series》2011年第5期933-942,共10页数学学报(英文版)

摘  要:Let δ be a locally compact semigroup, w be a weight function on δ, and Ma (δ, ω) be the weighted semigroup algebra of δ. Let L0^∞(δ; Ma(δ, ω)) be the C*-algebra of all Ma(δ, w)-measurable functions g on δ such that g/w vanishes at infinity. We introduce and study a strict topologyβ1 (δ, ω) on Ma(δ, ω) and show that the Banach space L0^∞(6;Ma(δ, ω) can be identified with the dual of Ma(δ, ω) endowed with 31(δ, ω). We finally investigate some properties of the locally convex topology β^1(δ, ω) on Mo(δ, ω). Keywords Foundation semigroup, locally convex space, weighted semigroup algebra, strict topologyLet δ be a locally compact semigroup, w be a weight function on δ, and Ma (δ, ω) be the weighted semigroup algebra of δ. Let L0^∞(δ; Ma(δ, ω)) be the C*-algebra of all Ma(δ, w)-measurable functions g on δ such that g/w vanishes at infinity. We introduce and study a strict topologyβ1 (δ, ω) on Ma(δ, ω) and show that the Banach space L0^∞(6;Ma(δ, ω) can be identified with the dual of Ma(δ, ω) endowed with 31(δ, ω). We finally investigate some properties of the locally convex topology β^1(δ, ω) on Mo(δ, ω). Keywords Foundation semigroup, locally convex space, weighted semigroup algebra, strict topology

关 键 词:Foundation semigroup locally convex space weighted semigroup algebra strict topology 

分 类 号:O177.2[理学—数学] O211.4[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象