检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Chinese Journal of Chemical Engineering》2011年第2期299-307,共9页中国化学工程学报(英文版)
基 金:Supported by the National Natural Science Foundation of China(20776042); the National High Technology Research and Development Program of China(2007AA04Z164); the Doctoral Fund of Ministry of Education of China(20090074110005); the Program for New Century Excellent Talents in University(NCET-09-0346); the"Shu Guang"Project(095G29); Shanghai Leading Academic Discipline Project(B504)
摘 要:Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.考虑到一个基因算法( GA )的表演被许多因素和他们的关系影响,这复杂、难被描述,一个新奇模糊底的适应基因算法( FAGA )把一个新人工的免疫系统与模糊系统理论相结合由于模糊理论能描述高复杂的问题的事实被建议。在 FAGA,有免疫力的理论被用来改进选择操作的表演。并且,转线路概率和变化概率被模糊推论动态地调整,它根据在算法表演和控制参数之间的启发式的模糊关系被开发。实验证明 FAGA 能高效地克服 GA 的缺点,即,早熟并且比二典型模糊气体减缓,并且获得更好的结果。最后, FAGA 被用于反应动力学模型的参数评价,令人满意的结果被获得。
关 键 词:fuzzy logic controller genetic algorithm artificial immune system reaction kinetics model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62