检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯龙庆[1,2] 时志强[2,3] 潘剑君[1] 殷燕[2] 张运林[2] 刘明亮[2]
机构地区:[1]南京农业大学资源与环境科学学院,南京210095 [2]中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,太湖湖泊生态系统研究站,南京210008 [3]河海大学环境科学与工程学院,南京210098
出 处:《湖泊科学》2011年第3期348-356,共9页Journal of Lake Sciences
基 金:中国科学院知识创新工程项目(KZCX1-YW-14,KZCX2-YW-QN312);国家自然科学基金项目(40971252,40825004,40730529)联合资助
摘 要:基于2006年和2007年1月两次太湖采样,对50个点位的有色可溶性有机物(CDOM)光谱吸收、荧光、溶解性有机碳(DOC)浓度及遥感反射率进行测定与分析,探讨冬季太湖CDOM的吸收荧光特性及空间分布,建立CDOM吸收系数的遥感反演算法.结果表明,太湖冬季CDOM在355nm处吸收系数a(355)变化范围和均值分别为1.83-7.34m-1、3.37±1.01m-1,相应的荧光及DOC浓度变化范围、均值分别为9.79-29.18N.FL.U、13.4±3.37N.FL.U;4.61-10.45mg/L、6.37±1.24mg/L.CDOM吸收系数、CDOM荧光值、DOC浓度三者呈显著正相关.空间分布上,两次调查均显示CDOM吸收系数、CDOM荧光值、DOC浓度呈现出明显的南低北高,最大值都出现在太湖北部的藻型湖区梅梁湾内,最小值则在东太湖和贡湖湾2个草型湖区.通过单波段、一阶微分和BP神经网络模型3种不同CDOM反演方法精度的分析、比较发现,BP神经网络模型反演结果最好,模型验证的相对均方根误差和平均相对误差分别为14.9%、11.7%,可以用于冬季太湖CDOM吸收系数a(355)的遥感估算.Based on two investigations with 100 sampling sites in Lake Taihu in January,2006 and 2007,the characteristics of spectral absorption and fluorescence,spatial distribution,and the retrieval model of chromophoric dissolved organic matter(CDOM) were studied.The ranges and mean values of CDOM absorption coefficient at 355nm a(355),fluorescence normalized Fn(355) and dissolved organic carbon(DOC) concentration were 1.83-7.34,3.37±1.01 m-1;9.79-29.18,13.4±3.37 N.FL.U;and 4.61-10.45,6.37±1.24 mg/L,respectively.Significant positive correlations between a(355) and DOC,a(355) and Fn(355) were found.Spatially,two surveys have shown that the higher values of a(355),Fn(355),DOC concentration were found in Meiliang Bay and lower values were found in East Lake Taihu and Gonghu Bay.Overall,a(355),Fn(355),and DOC concentration were significantly higher in two transects in northern lake regions than those in other transects in southern lake regions.The results showed that BP neural network model was superior to a single band model and the first order differential model for CDOM absorption estimation.The relative root mean square error(RRMSE) and mean relative error(MRE) of BP neural network model were 14.9% and 11.7%,respectively,based on an independent validation dataset including 25 samples.Thus,BP neural network model could be better used to estimate CDOM absorption in Lake Taihu.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46