基于复杂网络的随机森林算法预测氨基酸突变对蛋白质稳定性的影响(英文)  被引量:5

Complex network-based random forest algorithm for predicting the impact of amino acid mutation on protein stability

在线阅读下载全文

作  者:方正[1] 李益洲[1] 肖嘉敏[1] 李功兵[1] 文志宁[1] 李梦龙[1] 

机构地区:[1]四川大学化学学院,四川成都610064

出  处:《化学研究与应用》2011年第5期554-558,共5页Chemical Research and Application

基  金:国家自然科学基金资助项目(20972103)

摘  要:利用机器学习方法对单个氨基酸突变引起的蛋白质稳定性变化进行精确地预测,对蛋白质的结构和功能方面的研究具有重要的价值,并且对设计新的蛋白质及蛋白质工程学具有一定的指导意义。通过对蛋白质网络拓扑特征的研究,发现网络拓扑特征对于蛋白质突变稳定性影响具有较高的准确率。基于蛋白质网络拓扑特征的随机森林算法,能较好的对蛋白质单点突变所造成的稳定性改变进行预测,总准确率达到86%,MCC值达到0.67,并优于文献报道的预测结果。Protein stability changes by single amino acid substitutions are important for the understanding of the relationship between protein structure and function.Previous prediction models were constructed using protein sequence and structural characteristics to predict the change of free energy stability on mutant.Such models were also valuable for designing and engineering new proteins.In this study,we presented a random forest algorithm combined with protein network topology properties to predict the change of free energy stability caused by the single point mutation.Amino acid residues around a mutation were also applied to characterize its environment.This method achieved total prediction accuracy(ACC)of 0.86 and Matthew's correlation coefficient(MCC)of 0.67,which are slightly higher to those reported previously.

关 键 词:氨基酸突变 蛋白质稳定性 随机森林 复杂网络 

分 类 号:O657[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象