检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张桂才[1] 史铁林[1] 轩建平[1] 杨叔子[1]
机构地区:[1]华中理工大学
出 处:《中国机械工程》1999年第11期1250-1252,共3页China Mechanical Engineering
基 金:国家"九五"攀登计划预选项目
摘 要:提出一种基于高阶统计量特征提取的径向基函数网络齿轮故障分类方法。以齿轮箱振动信号的高阶统计量估计值作为齿轮故障特征,以径向基函数神经网络作为分类器,成功地对齿轮故障进行了分类。研究表明。An approach of gear fault classification,combing higher-order statistics with radial basis function (RBF) networks,is proposed. Higher-order statistics can eliminate additive Gaussian measurement noise, boost signal-to-noise ratio. The radial basis function (RBF) network, as an alternative to the BP network, preserves several advantages, such as fast convergence and best approximation to non-linear functions, etc. In this paper, the higher-order statistics calculated from vibration signals of a gearbox are used as input features, and an RBF network as the classifier, gear faults are successfully recognized. The experimental results show that the method of fault classification combining higher-order statistics with RBF network is very effective.
分 类 号:TH132.4[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90