检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周敏[1]
机构地区:[1]中国民用航空飞行学院计算机学院,四川广汉618307
出 处:《计算机工程与应用》2011年第15期43-45,共3页Computer Engineering and Applications
基 金:国家自然科学基金No.60879023~~
摘 要:传统的粒子群优化算法(Particle Swarm Optimization,PSO)只考虑了最优粒子对整个进化过程的引导作用且在一次迭代中所有粒子采用相同的惯性权值。为了体现各粒子相对于已知最优解的差异,提出了一种基于距离度量的自适应(k,l)PSO算法。(k,l)PSO算法采用轮盘赌策略在k个最优的粒子中选择一个粒子作为全局最优粒子参与粒子的速度更新,同时,根据粒子间的平均距离l确定粒子与选中的最优粒子的距离,自适应调整粒子的惯性权值。通过基准测试函数对算法进行了实验,实验验证了(k,l)PSO算法的有效性。The classical Particle Swarm Optimization(PSO) neglects the difference among particles and uses a fixed inertia weight in one generation.To cope with this issue,a novel method called(k,l) PSO is proposed in this paper.The(k,l) PSO chooses one of the top k particles as the global best particle according to the roulette strategy and tunes the inertia weight value according to the distance between the current particle and the global best particle.Several classical benchmark functions are used to evaluate the(k,l) PSO.The experiments demonstrate the efficiency and effectiveness of the proposed(k,l) PSO.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28