检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2011年第15期165-167,共3页Computer Engineering and Applications
摘 要:分析了New-Apriori和MWFI(Mining Weighted Frequent Itemsets)算法之不足,提出了一种挖掘加权频繁项集的New-MWFI算法。该算法按属性的权值对事务进行分类,并依次求出每个类别内的加权频繁项集。由于每个类别内的频繁项集满足Apriori性质,因而可以利用Apriori算法或其他改进算法进行挖掘,从而克服了原来算法的不合理和效率低下的缺陷。实验表明该算法能更有效地从数据集中挖掘出加权频繁项集。The shortages of the New-Apriori and Mining Weighted Frequent Itemsets (MWFI) are analyzed, and the New-MWFI algorithm for mining weighted frequent itemsets is proposed.In this algorithm the transactions are classified according to the item's weight and the weighted frequent itemsets are mined within each category in turn.Since the frequent itemsets of each category satisfy the Apriori's property, the Apriori algorithm or other improved algorithms can be used, thus the deficiencies of the original algorithms can be overcome successfully.Experiments show that the new algorithm is more effective in mining the weighted frequent itemsets from the dataset.
关 键 词:数据挖掘 加权关联规则 加权频繁项集 New-MWFI算法
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117