双离合器式自动变速器车辆换挡品质评价系统  被引量:26

Shifting Quality Evaluation System for Dual Clutch Transmission Vehicle

在线阅读下载全文

作  者:孙贤安[1] 吴光强[2] 

机构地区:[1]同济大学汽车学院,上海201804 [2]东京大学生产技术研究所,日本东京153-8505

出  处:《机械工程学报》2011年第8期146-151,共6页Journal of Mechanical Engineering

基  金:上海市科委资助项目(06DZ11002,08DZ1150401)

摘  要:目前换挡品质评价多采用主观评价而易受测试人员影响,而且较少考虑换挡过程对其他性能的影响。以双离合器式自动变速器(Dual clutch transmission,DCT)车辆为对象,综合考虑整车动力性、经济性、传动系耐久性、舒适性等多方面因素,结合换挡时间、加速度、冲击度和能量密度等,提出换挡品质评价指标。通过径向基函数(Radial basis function,RBF)神经网络方法,建立舒适性主、客观评价之间的联系,并考察不同参数对该网络性能的影响,分析网络训练误差随隐含层神经元数目变化的趋势,给出部分原始值和训练值之间的区别。基于此,采用界面化编程方式,开发换挡品质评价系统。结合某驾驶员意图下的换挡过程,进行仿真。结果表明,采用所开发的系统可以有效地消除主观因素的影响,增强了换挡品质评价的客观性。At present,subjective evaluation is mostly adopted for shifting quality evaluation,so it is easily influenced by the testing personnel,and the effects of the shifting process on other performances are hardly considered.Based on the vehicle of dual clutch transmission(DCT),with the comprehensive consideration of multiple factors including dynamic performance,economy,durability of transmission system and comfort,combining with shifting time,acceleration,jerk,energy density,etc,the shifting quality evaluation indexes are put forward.The relationship between subjective and objective evaluations of comfort is established through radial basis function(RBF) neural network,and the influences of different parameters on the network performance are examined,then the trend between training error and number of neurons and the difference between original data and training data are presented.Based on this,the shifting quality evaluation system is developed by using programming interface.The shifting process is simulated by combining with a driver's intention.The results show that the system developed can effectively eliminate the influence of subjective factor and increase the objectivity of shifting quality evaluation.

关 键 词:双离合器式自动变速器 换挡品质 评价指标 径向基函数神经网络 评价系统 

分 类 号:U463.212[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象