检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐靖[1,2] 李军辉[1,2] 朱巧明[1,2] 李培峰[1,2]
机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215006 [2]江苏省计算机信息处理技术重点实验室,江苏苏州215006
出 处:《计算机应用》2011年第6期1671-1674,1684,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(90920004;60970056;60873150);江苏省自然科学基金资助项目(BK2008160);江苏省高校自然科学重大基础研究项目(08KJA520002)
摘 要:在语义角色标注中,相对于动词性谓词,名词性谓词与其角色之间的结构更灵活和复杂。为了更好地捕获这些结构化信息,通过对名词性谓词语义角色标注相关特征集的研究,探索了新的单词特征和句法特征,用于名词性谓词语义角色标注。基于正确句法树和正确谓词识别,中文名词性谓词语义角色标注的F1值达到了73.99,优于目前国内外的同类系统;基于自动句法树和自动谓词识别,性能F1值为57.16。最后,讨论了使用动词性谓词的特征实例来提高名词性谓词SRL的准确率,然而性能的提高并不是很明显。Compared to verbal predicates,the structure between nominal predicates and their roles in Semantic Role Labeling(SRL) is more flexible and complex.In this paper,some new word-related and syntactic features were explored from various nominal predicate-specific features to capture the structure information for nominal SRL.The experimental results show that the proposed nominal SRL system achieved the performance of 73.99 in F1-measure on gold parse trees and gold predicates,and outperformed the state-of-the-art nominal SRL.However,the performance dropped to 57.16 in F1-measure on automatic parse trees and automatic predicates.Finally,the training data were augmented with verbal SRL instances to examine whether nominal SRL could benefit from verbal instances.The experimental result show,however,adding verbal SRL instances does indeed improve the performance of nominal SRL,although the improvement is not statistically significant.
关 键 词:语义角色标注 特征 动词性谓词 名词性谓词 结构化信息
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.226.47