检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏科技大学电子信息学院,江苏镇江212003
出 处:《江苏科技大学学报(自然科学版)》2011年第2期158-162,共5页Journal of Jiangsu University of Science and Technology:Natural Science Edition
基 金:江苏省普通高校研究生科研创新计划项目(CX10S_007Z);江苏高校优势学科建设工程项目
摘 要:在分析量子粒子群算法搜索特性的基础上,引入了微分进化算子以及混沌扰动,提出了基于微分进化算子和混沌扰动的量子粒子群算法:在粒子搜索的过程中,以一定的概率对粒子的每一维执行微分进化操作,以增加粒子的随机性,减少粒子因为多样性的缺失而陷入局部最优的概率;并根据混沌的随机性和遍历性在性能较差的部分粒子中加入混沌扰动,从而增加粒子局部搜索精度,提高算法的优化性能.通过多个测试函数的试验对比表明,文中提出的算法是可行且有效的.By analyzing characters ofQuantum-behaved Particle Swarm Optim ization A lgorithm(QPSO),an improved algorithm called CQPSO-DE is proposed in this study.The algorithm introduces the ideas of d ifferential evolution(DE) operator and chaos d isturbance.During search procedure,every d imension of particles executes the DE operator accord ing to a certain probability.This can increase randomness and avoid local optimums.Fur-thermore,in order to enhance the particles′search accuracy,applying the randomness and ergod icity of chaos d isturbs the worse part of particles.At last,some benchmark functions are used to test performance of the algo-rithm.Computing results demonstrate the effectiveness and feasibility of the CQPSO-DE algorithm.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229