基于改进JIT算法的软测量建模及其在污水处理中的应用  被引量:9

Enhanced JIT-Based Soft-Sensing Modeling and Its Application to Wastewater Treatment

在线阅读下载全文

作  者:刘乙奇[1] 黄道平[1] 李艳[1] 

机构地区:[1]华南理工大学自动化科学与工程学院,广东广州510640

出  处:《华南理工大学学报(自然科学版)》2011年第5期55-60,67,共7页Journal of South China University of Technology(Natural Science Edition)

基  金:国家自然科学基金资助项目(60704012);华南理工大学中央高校基本科研业务费资助项目(2009ZM0161)

摘  要:为解决污水生化处理过程中的水质参数BOD5(5天生化需氧量)难以在线监测的难题,在充分考虑污水处理过程非线性和多变量耦合的基础上,结合Jolliffe参数和数据选择算法提出了鲁棒最近相关性算法,并将其与RPLS(迭代偏最小二乘)和线性偏差补偿等算法相结合,对JIT(Just-in-Time)在线学习算法进行了改进,最后将改进的JIT算法用于建立BOD5软测量模型.对现场数据的仿真结果表明,与传统JIT算法和RPLS法相比,文中方法提高了软测量的在线预测精度、自适应性和鲁棒性.In order to overcome the difficulty in on-line measurement of five-day biochemical oxygen demand(BOD5)during the wastewater treatment,by taking into consideration the nonlinearity and multivariant coupling characteristics of wastewater treatment process,a robust nearest correlation algorithm based on Jolliffe parameters and correlation data selection algorithm is proposed,which is then combined with the recursive partial least square algorithm and the linear bias compensation algorithm to improve the conventional JIT(Just-in-Time) algorithm.Finally,the enhanced JIT algorithm is used to build an on-line soft-sensing model of BOD5.The results of simulation show that the enhanced JIT algorithm outperforms the conventional JIT and RPLS algorithms in terms of on-line prediction accuracy,adaptability and robustness of soft sensing.

关 键 词:软测量 JIT算法 生化需氧量 污水处理 迭代偏最小二乘 

分 类 号:TP302.1[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象