检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东莞市隆泰实业有限公司,广东东莞523291 [2]焦作万方铝业股份有限公司,河南焦作454000 [3]河南理工大学计算机科学与技术学院,河南焦作454003
出 处:《煤炭科学技术》2011年第6期82-85,共4页Coal Science and Technology
基 金:河南理工大学博士基金资助项目(B2010-48)
摘 要:为了解决煤矿压风机监控系统关键传感器的故障检测与分离问题,提出了一种基于主元分析模型的传感器故障诊断方法。该方法可辨识系统中相关性较高的若干传感器,并为之建立主元分析模型。根据所建立的模型,利用平方预报误差(SPE)判断系统中是否有传感器发生故障;利用SPE贡献图定位故障传感器。系统经阶跃偏差故障试验和漂移故障试验,结果表明,将主元分析法应用于煤矿压风机监控系统传感器的故障检测与分离,可为压风机系统的正常运行提供有力保障。In order to solve the key sensor fault detection and separation problems of the mine pressurized fan monitoring and control system,a sensor fault diagnosis method based on the main element analysis model was provided.The main element analysis model was established with the several sensors highly related in the identification system of the diagnosis method.According to the established model,the square prediction error was applied to judge any sensors with fault in the system.The contribution plot of the square prediction error was applied to position the fault sensor.The system had the step deviation fault test and the drift fault test and the results showed that the main element analysis method could be applied to the sensor fault detection and separation of the monitoring and control system for the mine pressurized fan and could provide the powerful protection to the normal operation of the mine pressurized fan system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.232.138