检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨越[1,2] 胡汉平[1] 熊伟[1] 丁帆[1]
机构地区:[1]华中科技大学图像识别与人工智能研究所,武汉430074 [2]中国地质大学机电学院测控系,武汉430074
出 处:《计算机科学》2011年第6期93-95,117,共4页Computer Science
基 金:国家自然基金(60773192)资助
摘 要:从非平稳时间序列的分布函数及其参数入手,主要研究分布函数不变分布参数变化的这一类非平稳的时间序列异常点检测方法,提出了基于超统计的异常检测方法,并将其应用于非平稳网络流量时间序列。从网络流量的非平稳和突发性特点出发,特别考虑到由于攻击流量所引起的流量特性的变化,结合超统计理论,主要研究分布参量的变化。根据超统计的理论,先应建立分布统计模型,研究分布模型不同参数变化对分布的决定性作用,从而将异常网络流量的检测研究转化成对慢变量参数序列的检测研究。该检测方法大大降低了计算的复杂度。通过大量实验表明该方法具有良好的效果。Because of network traffic non-stationary property it can hardly use traditional way to analyze the complica-ted network traffic.A new detection method of non-stationary network traffic based on superstatistics theory was discussed.According to the superstatistics theory,the complex dynamic system may have a large fluctuation of intensive quantities on large time scales which causes the system to behave as non-stationary which is also the characteristic of network traffic.This new idea provides us with a novel method to partition the non-stationary traffic time series into small stationary segments.We used the slow parameters of the segments as a key determinant factor of the system to describe the network characteristic and analyze the slow parameters with time series theory to detect network anomaly.The result of experiments indicates that this method can be effective.
分 类 号:TP31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.255.182