基于多数据域描述的转录因子结合位点识别  被引量:1

TRANSCRIPTION FACTOR BINDING SITES RECOGNITION BASED ON MULTIPLE DATA DOMAIN DESCRIPTION

在线阅读下载全文

作  者:陈鸣[1] 薛慧君[2] 熊赟[1] 朱扬勇[1] 

机构地区:[1]复旦大学计算机科学技术学院,上海200433 [2]内蒙古电子信息职业技术学院计算机科学系,内蒙古呼和浩特010011

出  处:《计算机应用与软件》2011年第6期1-4,42,共5页Computer Applications and Software

基  金:国家自然基金项目(60903075);上海市重点学科项目(B114)

摘  要:转录因子结合位点的识别对于理解转录调控机制起着重要作用,也是后基因组时代面临的巨大挑战之一。提出一个基于多任务学习的转录因子位点的识别方法。首先建立一个基于多任务学习理论的多数据域描述模型,然后结合核方法设计转录因子结合位点多分类识别算法。最后对取自于TRANSFAC数据库的真实数据进行交叉验证测试。实验结果表明该方法能充分地利用稀缺的训练样本,有效地捕获不同类别间的联系,从而获得了较高的预测准确率。Transcription factor binding site recognition plays an important role in the comprehension of transcription regulation mechanism,and is the great challenge the post-genome era encounters as well.In this paper we present a multi-task learning based approach for the problem of transcription factor binding sites(TFBS) recognition.Firstly,a new multiple data domain description model was established,it was based on the theory of multi-task learning;then in combination with kernel methods,a multiple classification recognition algorithm for transcription factor binding site was designed.Finally,the real data set retrieved from TRANSFAC database was tested with cross-validation.Experimental result indicated that this approach can fully use scarce training samples and effectually capture the inter-class relations,therefore attained quite high accuracy in prediction.

关 键 词:多任务学习 转录因子结合位点 多数据域描述 核方法 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象