GPS动态定位中整周模糊度的快速解算  被引量:3

Rapid Resolution of GPS Integer Ambiguity in Dynamic Positioning

在线阅读下载全文

作  者:刘少鹏[1] 卢艳娥[1] 周亚飞[1] 

机构地区:[1]空军工程大学电讯工程学院,陕西西安710077

出  处:《现代防御技术》2011年第3期63-66,147,共5页Modern Defence Technology

基  金:陕西省自然科学基金资助项目(No.SJ08F11)

摘  要:在导航中快速和高精度GPS定位需要解算差分载波相位的整周模糊度值。目前整周模糊度的求解方法,丢失了对提高未知参数估值精度很有用的历元信息,并且在去相关过程中必须使方差阵为正定阵,不仅解算难度大,还可能出现病态分解,使得去相关失败。提出了一种GPS整周模糊度的快速解算方法,首先利用卡尔曼算法求解整周模糊度的浮点解;其次确定搜索空间,对协方差阵进行Cholesky分解,削弱其相关性;最后用ratio检验得出最终解。通过理论推导和基于实测数据的仿真分析表明,卡尔曼算法有效地利用多历元信息提高了浮点解的精度,并且在去相关过程中解决了方差阵必须为正定阵的问题,避免出现病态分解,使得搜索空间得到明显的改善,提高了效率,具有实际的应用价值。The fast and precise GPS positioning in navigation needs solving the integer ambiguity from different observations. Currently, the epoch message will be lost in the integer ambiguity solving method. Moreover, the process of eliminating relation has to contain the covariance positive matrix, which is hard and low efficient to decompose and even results to improper decomposition, causing the failure of de-correlation. A rapid solution of GPS integer ambiguity is put forward. Firstly, the floating - point in integer ambiguity is calculated with Kalman filter method. Then, the search space is confirmed and covariance matrix is analyzed with Cholesky in order to weaken the correlation. Finally, the integer ambiguity is solved with and verified by ratio. The theoretical arithmetic and analysis based on the data in real condition indicate that the precision of floating point result with kalman is effectively improved. The problem that covariance matrix must be positive in process of eliminating relation is resolved, the improper decomposition is avoided and the search space is ameliorated. Therefore, the method is useful in practice.

关 键 词:载波相位 整周模糊度 卡尔曼滤波 对称三角分解 

分 类 号:P228.4[天文地球—大地测量学与测量工程] TP391.9[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象