检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学电讯工程学院,陕西西安710077
出 处:《现代防御技术》2011年第3期63-66,147,共5页Modern Defence Technology
基 金:陕西省自然科学基金资助项目(No.SJ08F11)
摘 要:在导航中快速和高精度GPS定位需要解算差分载波相位的整周模糊度值。目前整周模糊度的求解方法,丢失了对提高未知参数估值精度很有用的历元信息,并且在去相关过程中必须使方差阵为正定阵,不仅解算难度大,还可能出现病态分解,使得去相关失败。提出了一种GPS整周模糊度的快速解算方法,首先利用卡尔曼算法求解整周模糊度的浮点解;其次确定搜索空间,对协方差阵进行Cholesky分解,削弱其相关性;最后用ratio检验得出最终解。通过理论推导和基于实测数据的仿真分析表明,卡尔曼算法有效地利用多历元信息提高了浮点解的精度,并且在去相关过程中解决了方差阵必须为正定阵的问题,避免出现病态分解,使得搜索空间得到明显的改善,提高了效率,具有实际的应用价值。The fast and precise GPS positioning in navigation needs solving the integer ambiguity from different observations. Currently, the epoch message will be lost in the integer ambiguity solving method. Moreover, the process of eliminating relation has to contain the covariance positive matrix, which is hard and low efficient to decompose and even results to improper decomposition, causing the failure of de-correlation. A rapid solution of GPS integer ambiguity is put forward. Firstly, the floating - point in integer ambiguity is calculated with Kalman filter method. Then, the search space is confirmed and covariance matrix is analyzed with Cholesky in order to weaken the correlation. Finally, the integer ambiguity is solved with and verified by ratio. The theoretical arithmetic and analysis based on the data in real condition indicate that the precision of floating point result with kalman is effectively improved. The problem that covariance matrix must be positive in process of eliminating relation is resolved, the improper decomposition is avoided and the search space is ameliorated. Therefore, the method is useful in practice.
分 类 号:P228.4[天文地球—大地测量学与测量工程] TP391.9[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62