检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭建辉[1,2]
机构地区:[1]广东工业大学自动化学院,广东广州510006 [2]阳江职业技术学院计算机科学系,广东阳江529566
出 处:《现代电子技术》2011年第12期65-68,共4页Modern Electronics Technique
基 金:国家自然科学基金资助项目(60673132)
摘 要:为了提高红外步态识别精度的目的,采用分别基于小波描述子特征的模糊分类器识别和基于体形平均灰度图特征的贝叶斯分类器识别,再进行基于遗传算法和BP模糊神经网络的多分类器融合识别的新方法。做了基于中科院红外步态数据库的识别仿真实验,获得识别率、等错误率和累积匹配分值的实验数据及对比结果,得到多分类器融合识别比单分类器识别提高约10%识别率,降低约10%等错误率,完全收敛阶数提高1倍多的结论。具有识别精度高、收敛速度快的特点。A new algorithm is proposed in order to improve the precision of the infrared gait recognition.The new method adopted the fuzzy classifier recognized by characteristics of the wavelet descriptors and the Bayesian classifier based on shape features of average grayscale respectively,and then performed the fusion recognition of multiple classifier based on genetic algorithm and BP fuzzy neural network.The recognition simulation experiment was made based on the infrared gait database of the Chinese Academy of Sciences.The comparison results and experimental data about the recognition rate,the error rate and the cumulative match score were gained.The conclusion shows that the multiple classifier fusion recognition increased about 10% at the recognition rate,reduced about 10% at the equal error rate,increased 1 times more at the complete convergence order number than the single classifier recognition.The characteristics of high accuracy and quick convergence are obvious.
关 键 词:BP模糊神经网络 红外 步态识别 多分类器融合 遗传算法
分 类 号:TN919-34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147